© 2018  Copyright Environmental Policy Consortium (EEPC)

Unconventional Oil & Gas Regulation

Subsequent the passage of the Energy Policy Act (EPAct) of 2005, 42 U.S.C. § 15801, P.L. 109-58, the U.S. government vastly encouraged economic investment into our oil and gas infrastructure.  This Act included the repeal of Public Utility Holding Company Act (PUHCA), 15 U.S.C. § § 79-79z(6), which was established in 1935 to aid individual states with their efforts to effectively regulate the energy sector following the Great Depression.  Following the repeal of PUHCA, the Federal Energy Regulatory Commission (FERC) has allowed immense outside capital investment into the U.S. oil and gas market, allowing for emerging new unconventional oil and gas extraction methods to flourish, such as horizontal drilling techniques.

The EPAct of 2005 amended § 1421(d) of the Safe Drinking Water Act (SDWA), 42 U.S.C. § 300f et seq. and specifically exempted hydraulic fracturing (HF) wastewater from the Underground Injection Control (UIC) program.  Since HF related hazardous waste is not federally regulated by the Resource Conservation and Recovery Act (RCRA), 42 U.S.C. § § 6921-6939g, Subtitle C, § § 3001-3023, this exemption compromises the already unsafe oversight of HF wastewater injection controls.  The EPAct of 2005 expanded the language of an existing exemption for the oil and gas industry, regarding the Clean Water Act (CWA), 33 U.S.C. § 1251 et seq., which allows production sites to not be required submit a National Pollution Discharge Elimination System (NPDES) permit for any stormwater affiliated discharges associated with all processing activities, including produced water (wastewater) treatment, energy transmission, and corresponding construction activities (CWA, §502).  The EPAct of 2005 also initiated a National Environmental Policy Act (NEPA) exclusion pursuant 42 U.S.C. § 15924(b), which eliminated NEPA review by the Department of the Interior and the Secretary of Agriculture for oil and gas exploration conducted in National Forest System Lands.  This NEPA exemption also applies to all surface disturbances <5 acres, and also to well sites where drilling transpired within the previous 5 years..
 
In the U.S., numerous entities that engage in unconventional methods of oil and gas exploration have contaminated aquifers, lakes, streams, diminished air quality (Soeder and Kappel 2009; Kargbo et al. 2010; Gregory et al. 2011; Chalmers et al. 2012; Vidic et al. 2013; Brittingham et al. 2014; Mauter et al. 2014; Schneising et al. 2014; Gallegos et al. 2015) and augmented the frequency and intensity of induced seismicity (Weingarten et al. 2015; USGS 2016). A substantial increase in median annual water volume allocated for HF in the U.S. was experienced between 2000-2014, rising from 670 m3 to 19,425 m3 (Gallegos et al. 2015). In 2016 the USGS validated that HF wastewater injection significantly influences earthquake nucleation, and confirmed that the volume of injected produced water manipulates the quantity of induced seismic events.  HF wastewater injection can have far-reaching effects.  Recorded pressure increases from cumulative wastewater injection from as far as 90km away, has been observed by the Kanas Geological Survey to induce seismicity, as a result of far-field pressure diffusion (Peterie et al. 2018). 

Since Nobel Prize recipient Svante Arrhenius realized that fossil fuel combustion increased CO2 emissions in our atmosphere in 1896, scientists and policy makers have acknowledged the calamitous potential for the oil and gas industry to render substantial deleterious effects on ecosystems. Yet in 2016, the U.S. utilized fossil fuels to facilitate 80.9% of all energy consumption (US EIA 2017).  A recent report by the UN IPCC revealed previous predictions regarding climate change were vastly underestimated, and to prevent an increase of 2.7 °F in global temperatures, GHG emissions must be reduced by 45% from 2010 levels by 2030, and 100% by 2050 (UN IPCC 2018).  Future energy policies must be focused on restricting the supply-side of fossil fuel generation, and be aimed at reducing the amount of natural resources extracted and utilized for consumption, rather than favoring demand-side regulations (cap-and-trade on emissions), which promotes the continuous development of fossil-fuel infrastructure. 

 

Works Cited:

 

USGS (United States Geological Survey). 2016. Induced earthquake magnitudes are as large as (statistically) expected. Journal of Geophysical Research: Solid Earth, 121(6): 4575–4590. http://www.its.caltech.edu/~pagem/InducedMmax.pdf 

Brittingham M, Maloney K, Farag A, Harper D, Bowen Z. 2014. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ. Sci. Technol., 48(19): 11034–11047.

Gregory K, Vidic R, Dzombak D. 2011. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements, 7(3): 181–186.

Shapiro S, Dinske C, Kummerow J. 2007. Probability of a given-magnitude earthquake induced by a fluid injection. Geophys. Res. Lett. Vol. 34, L22314, doi:10.1029/2007GL031615.  https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007GL031615

 

Peterie S, Miller R, Buchanan, DeArmond B. 2018. Fluid injection wells can have a wide seismic reach. Eos, 99, https://doi.org/10.1029/2018EO096199.  Published on 17 April 2018.

 

Gallegos T, Varela B, Haines S, Engle M. 2015. Hydraulic fracturing water use variability in the United States and potential environmental implications. US Geological Survey, Water Resources Research, 51(7): 5839-5845.  https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR017278

 

Kargbo D, Wilhelm R, Campbell D. 2010. Natural gas plays in the marcellus shale: challenges and potential. Environ. Sci. Technol., 44(15)5679–5684.

Schneising O, Burrows J, Dickerson R, Buchwitz M, Reuter M, Bovensmann H. 2014. Remote sensing of fugitive methane emissions from oil and gas production in north American tight geological formations. Earth’s Future, 2: 548-558. https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014EF000265

UN IPCC (United Nations Intergovernmental Panel on Climate Change). 2018. Global warming of 1.5 °C: summary for policymakers.  Approved at the 1st Joint Session of Working Groups I, II, III of the IPCC, and by the 48th Session of the IPP, Republic of Korea, 6 October 2018.  http://www.ipcc.ch/report/sr15/

 

US EIA (United States Energy Information Administration) 2017. U.S. energy consumption rose slightly in 2016 despite a significant decline in coal use. https://www.eia.gov/todayinenergy/detail.php?id=30652

Vidic R, Brantley S, Vandenbossche J, Yoxtheimer D, Abad J. 2013. Impact of shale gas development on regional water quality. Science, 340(6134). http://science.sciencemag.org/content/340/6134/1235009

Weingarten M, Ge S, Godt W, Bekins B, Rubinstein J. 2015. High-rate injection is associated with the increase in U.S. mid-continent seismicity. Science, 348(6241): 1336-1339.

Mauter M. 2014. Regional variation in water-related impacts of shale gas development and implications for emerging international plays. Environ. Sci. Technol, 48(15): 8298–8306.